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ABSTRACT Point cloud streaming has recently attracted research attention as it has the potential to
provide six degrees of freedom movement, which is essential for truly immersive media. The transmission
of point clouds requires high-bandwidth connections, and adaptive streaming is a promising solution to
cope with fluctuating bandwidth conditions. Thus, understanding the impact of different factors in adaptive
streaming on the Quality of Experience (QoE) becomes fundamental. Point clouds have been evaluated
in Virtual Reality (VR), where viewers are completely immersed in a virtual environment. Augmented
Reality (AR) is a novel technology and has recently become popular, yet quality evaluations of point
clouds in AR environments are still limited to static images. In this paper, we perform a subjective study
of four impact factors on the QoE of point cloud video sequences in AR conditions, including encoding
parameters (quantization parameters, QPs), quality switches, viewing distance, and content characteristics.
The experimental results show that these factors significantly impact the QoE. The QoE decreases if the
sequence is encoded at high QPs and/or switches to lower quality and/or is viewed at a shorter distance,
and vice versa. Additionally, the results indicate that the end user is not able to distinguish the quality
differences between two quality levels at a specific (high) viewing distance. An intermediate-quality point
cloud encoded at geometry QP (G-QP) 24 and texture QP (T-QP) 32 and viewed at 2.5m can have a QoE
(i.e., score 6.5 out of 10) comparable to a high-quality point cloud encoded at 16 and 22 for G-QP and T-QP,
respectively, and viewed at a distance of 5m. Regarding content characteristics, objects with lower contrast
can yield better quality scores. Participants’ responses reveal that the visual quality of point clouds has not
yet reached an immersion level as desired. The average QoE of the highest visual quality is less than 8 out
of 10. There is also a good correlation between objective metrics (e.g., color Peak Signal-to-Noise Ratio
(PSNR) and geometry PSNR) and the QoE score. Especially the Pearson correlation coefficients of color
PSNR is 0.84. Finally, we found that machine learning models are able to accurately predict the QoE of point
clouds in AR environments. The subjective test results and questionnaire responses are available on GitHub:
https://github.com/minhkstn/QoE-and-Immersion-of-Dynamic-Point-Cloud.
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I. INTRODUCTION
In recent years, immersive video delivery has improved
significantly [46]. This type of video content can be
viewed in Extended Reality (XR), including Virtual Reality
(VR), Augmented Reality (AR), and Mixed Reality (MR),
to provide near-lifelike three-dimensional (3D) objects and
scenes. To represent these 3D entities, Point Clouds (PCs)
are commonly used as the format providing high-fidelity
representations without any constraint on the viewpoint and
interaction. A PC comprises thousands or even millions of
points, including information about colors (e.g. RGB) and
geometry (x,y,z coordinates) of each point. Thus, the usage of
PCs costs a large amount of storage and network bandwidth.
A single raw PC frame can reach hundreds of Mbit in size,
which leads to several Gbit/s of bandwidth requirement for
an uncompressed 30 frames per second (fps) video [20], [48].
One promising solution is adaptive streaming techniques
(i.e., HTTP Adaptive Streaming (HAS) [10]) combined with
point cloud compression (PCC) [42].

In HAS, the content is encoded into various quality levels,
then temporally split into multiple segments with the same
duration. These segments are stored on one or multiple
servers in a content delivery network [16]. The end users’
media player selects the quality level for each segment
based on the network conditions (i.e., observed throughput),
the devices’ characteristics (i.e., resolution and buffer), and
the users’ preferences [9]. HAS adapts to variations in the
network conditions in order to prevent rebuffering events
while providing the highest quality possible by changing
the quality of the content, which leads to quality switches.
The quality switches are well-known to affect the Quality of
Experience (QoE) in traditional video streaming [29], [41].
However, they have not been fully considered in dynamic
point cloud streaming.

Due to extremely high data volumes of uncompressed
PCs, point cloud compression (PCC) is necessary to reduce
both storage requirements and the amount of data delivered
through networks. Initial studies started with compression
of static 3D objects [17], [21], [27]. However, recent work
focused on dynamic scenarios [35]. The Moving Picture
Experts Group (MPEG) developed standardized solutions
for point cloud compression by leveraging their existing
codecs, such as High Efficiency Video Coding (HEVC) [39].
Their video point cloud encoder implementation can achieve
a compression rate of 125:1. This means that a dynamic
PC with 1 million points can be compressed at a bitrate
of 8Mbit/s [1], which is feasible for delivery over current
networks. However, PCC comes at the cost of visual quality,
determined by the quantization parameter (QP). A higher QP
provides a lower bitrate but leads to a lower quality.

Therefore, understanding the impact of different factors
in HAS and PCC on the QoE is of importance. PCs have
been evaluated in different viewing conditions (i.e., VR
head-mounted displays (HMDs) and 2-dimensional (2D)

screens) [6], [47]. However, research on the subjective quality
assessment of PCs in AR environments is still limited.
AR enhances people’s perception of physical and virtual envi-
ronments [9]. Thus, it is an interesting setting for immersive
telepresence applications, which we develop and assess in
the European project Scalable Platform for Innovations on
Real-time Immersive Telepresence (SPIRIT) [2].

In this paper, we study the impact of various factors on
the QoE for PC-based video streaming in AR environments,
i.e., (i) encoding parameters (i.e., QPs), (ii) quality switches,
(iii) viewing distance, and (iv) content characteristics.
We also consider the immersion level of PC objects in the real
environment. In addition, cybersickness, which is a common
symptom in VR, is investigated with the user wearing an
AR HMD. The contributions of this paper are fourfold:

• We provide quantitative results on the perceptual quality
and the impacts of various factors on the QoE of the
user, including encoding parameters (i.e., QPs), quality
switches, viewing distance, and content characteristics.

• We provide qualitative results regarding the presence
of life-size digital humans as dynamic point clouds in
the physical world and the cybersickness issue in AR
environments.

• We evaluate the correlation between objective metrics
and subjective quality for dynamic PCs.

• We assess state-of-the-art machine learning-based mod-
els in predicting the QoE for PC-based video streaming
in AR environments.

The remainder of this paper is organized as follows.
Section II provides an overview of existing literature
related to PCC, HAS, subjective quality assessment, and
cybersickness. Section III describes our subjective study, fol-
lowed by Section IV containing the results and discussions.
Section V describes the evaluations of the QoE predic-
tion ability of common machine learning models. Finally,
Section VI concludes this paper and suggests future work.

II. RELATED WORK
A. POINT CLOUD COMPRESSION
MPEG started working on point cloud compression (PCC)
in 2014. After a call for proposals in 2017, three tech-
nologies were selected, including LIDAR PCC (L-PCC)
for dynamically acquired data, Surface PCC (S-PCC) for
static content, and Video-based (V-PCC) for dynamic point
clouds [35]. The final standard now comprises two technolo-
gies: (1) Geometry-based PCC (G-PCC), which combines
L-PCC and S-PCC because of their similarities [15], and
(2) Video-based PCC (V-PCC). G-PCC encodes the point
cloud 3D positions directly to create the compressed point
cloud. Tiles and slices are introduced to encode parts
of point clouds independently. A slice is a group of points that
can be independently encoded, and a tile consists of multiple
slices. However, the current version of G-PCC only supports
intra prediction. Motion estimation and inter prediction will
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be considered in the next version of the standard [20]. V-PCC,
on the other hand, projects the 3D points onto 2D images and
then uses traditional encoders, e.g., H.265/HEVC, to encode
these images and thus can benefit from the encoders’ efficient
coding and simplify deployment.

B. HTTP ADAPTIVE STREAMING FOR POINT CLOUDS
Hosseini and Timmerer were among the first to investigate
dynamic adaptive point cloud streaming techniques that
extend the concepts of Dynamic Adaptive Streaming over
HTTP (DASH) [38]. However, instead of a dedicated
encoder, they used sampling to reduce the data usage and
create different quality levels. They also proposed to stream
PCs on a per-frame basis, leading to a significant overhead
of 30 GET requests per second (for a 30 fps sequence). In a
later work [48], van der Hooft et al. used MPEG’s reference
encoder to generate quality levels and proposed different
heuristic rate adaptation techniques for dynamic point cloud
objects. They also introduced a DASH-compliant framework
for point cloud streaming. In a fairly recent work, Wang et al.
proposed a QoE-optimized rate adaptation algorithm for
point cloud transmission [52]. The authors leverage the 3D
tiling technique [30] to divide the point cloud into small
cubes, i.e., 3D tiles. Each tile is encoded and decoded
independently. Thus, only the tiles in the user’s viewport are
requested, and their bitrates are allocated separately under a
given network bandwidth. This technique can significantly
reduce the amount of data transferred to the end user.

C. SUBJECTIVE QUALITY ASSESSMENT
Wu et al. [56] evaluated the quality of PCs with differ-
ent quality levels. However, quality switching in the test
sequences was not considered, and the device used in the
subjective test was a VR device (i.e., HTC VIVE1) rather
than an AR device. The work in [47] considered the quality
switching of PC videos in the context of HAS. It was
found that the texture of PC objects is an essential factor in
determining the QoE and that content with fewer contrast
differences can provide higher QoE. However, the PCs
were displayed on a 2D screen that cannot offer a truly
immersive experience. The work in [12] considered different
quality levels and viewing distances while watching two 3D
representation formats — PCs and meshes. The experiments
were conducted on a flat screen, and the results showed that a
closer viewing distance led to lower QoE for a given quality
level. In a similar work, Van Damme et al. also used 3D
objects in the two different formats but showed the objects
in a VR environment [44]. These experiments also found that
a closer viewing distance leads to lower QoE.

D. CYBERSICKNESS
Cybersickness can be defined as the feeling of dizziness,
nausea, or headache when people are watching content on
2D screens or through XR devices. It has been commonly

1https://www.vive.com/. Accessed 16 August 2023.

investigated in XR environments, especially VR [13], [34],
[36], [43]. Tran et al. [43] considered cybersickness a
factor contributing to QoE in a subjective test with different
360◦ videos. They found that cybersickness is a critical
issue in VR, especially in videos with fast camera motion.
Caserman et al. [13] compared the impact of different HMDs,
including HTC VIVE, Oculus Rift DK1, and DK2,2 on
cybersickness. The results showed that HTC VIVE mitigates
the level of nausea symptoms thanks to its accurate positional
tracking. However, the studies of cybersickness in AR
environments are still limited. Recently, Kirollos et al. [25]
compared the cybersickness in VR and AR HMDs by
rendering the entire scene of the physical environment viewed
in a Microsoft HoloLens 23 (AR HMD) into an Oculus
Rift S4 (VR HMD). VR was found to cause more sickness
than AR due to more virtually rendered elements. However,
a limitation of this work is that the objects used in the
evaluation are static furniture inside a room.

In this paper, we conduct a subjective test in which
participants wear the Microsoft HoloLens 2 to watch and rate
dynamic point clouds. We ask the participants about their
cybersickness symptoms at the end of the subjective test to
understand the level of cybersickness in an AR environment.

III. SUBJECTIVE TEST FOR POINT CLOUD ASSESSMENT
This section gives an overview of the influence factors
considered, followed by a description of our subjective test
methodology, including dataset, equipment, environment,
and subjects’ tasks.

A. INFLUENCE FACTORS
The focus of this study is on four main influence factors on
the QoE while watching PC videos in AR environments.
Encoding parameters:QoE is clearly affected by encoding

parameters, most notably by the QPs. These parameters
reduce the amount of data in the video at the cost of
distorting the perceptual quality. As there are two attributes
(i.e., geometry and texture) in a PC, a pair of QPs, namely
geometry QP (G-QP) and texture QP (T-QP), are used in the
encoding. A higher G-QP causes points to deviate more from
their original position. Similarly, when T-QP increases, some
color information is combined [56].
Quality switches: In the context of HAS, the video quality

can be changed due to fluctuation of the throughput [29], [41]
to minimize content rebuffering. This change in video quality
is referred to as a quality switch. Quality switches can
be classified as switching up, when quality increases and
switching down when quality decreases.
Viewing distance: As six degrees of freedom (6DoF)

interaction allows end users to move freely in their space,
the viewing distance from end users to the object can vary

2https://developer.oculus.com/blog/open-source-release-of-rift-dk2/.
Accessed 16 August 2023.

3https://www.microsoft.com/en-us/hololens. Accessed 16 August 2023.
4https://www.oculus.com/rift-s/. Accessed 16 August 2023.
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FIGURE 1. Tested objects in 8i Voxelized full bodies database [19].

FIGURE 2. Raw points (left) and square shader (right) representations of
Loot at 2.5 m.

depending on their movement. In this work, we examine the
impact of viewing distance on the user’s QoE.
Content characteristics: The perspective of viewers can

vary depending on the content [43], [47]. In this paper, four
videos with different characteristics are used.

B. DATASET PREPARATION
As this work focuses on the usage of PCs in telepresence
applications, we used four PC objects from the 8i Voxelized
Full Bodies Database [19]: Loot, RedAndBlack, LongDress,
and Soldier as shown in Fig. 1. The first two have a lower
contrast content than the other two [47]. Each sequence
captures a complete object using 42 RGB cameras operating
at 30 fps for 10 seconds.

We use the MPEG V-PCC reference software Test Model
Category 2 (TMC2) [4] to create compressed PCs by varying
the quantization parameters (QPs). This software already
includes five sets of QPs defined in MPEG’s Common Test
Conditions (CTC) [3] with the geometry QP (G-QP) and
texture QP (T-QP) ranging from 16 to 32 and from 22 to 42,
respectively. Three such pairs from the MPEG PCC software
with the lowest, middle, and highest QPs (i.e., the rates R5,
R3, and R1 in MPEG’s software [4]) are selected as follows:

• Q1 (R1): (G-QP, T-QP) = (32, 42)
• Q2 (R3): (G-QP, T-QP) = (24, 32)
• Q3 (R5): (G-QP, T-QP) = (16, 22)

TABLE 1. Bitrates in Mbit/s of different quality levels of the PC objects.

TABLE 2. Notation and description of the test sequences.

Q3 is thus the best quality level. The bitrate of the objects
decreases with increasing QPs (see Table 1). For instance,
Loot’s bitrates are 2.3Mbit/s, 5.6Mbit/s and 16.7Mbit/s for
Q1, Q2, and Q3, respectively.

We developed a Unity project [49] using the Pcx Point
Cloud importer [40] and the PointXR square shader [6]
to import and render PCs, respectively. Fig. 3 illustrates
the architecture of the platform. Our platform consists of a
workstation, a Wi-Fi router, and HoloLens 2. A workstation
running on Windows 10 with an Intel Core i9-13900K
processor, 64GB memory, and an NVIDIA RTX 4070 Ti
GPU stores the compressed point cloud frames in the Unity
project. A Sequence Configuration is created to list all the
point cloud objects with their configurations (i.e., quality
levels and viewing distance). Then, the Unity software in the
workstation generates the test sequences via Test Sequences
Generation and sends them to HoloLens 2 through a Wi-Fi
router using Holographic Remoting.5 The participants watch
and rate the visual quality of the test sequences through
interactions with the HoloLens 2. We collect the rating scores
and store them at the workstation.

Fig. 2 compares a PC in raw points and square shader rep-
resentations. Pre-tests conducted by comparing the subjective
visual quality of the point and square shaders showed that the
square shader of [6] is visually superior to raw PCs; therefore,
this format is used in our test. The C# scripts in [50] are used
to control the quality and distance to design the sequences
mentioned in the sequel. These scripts are part of the testing
platform, which is available on GitHub [49].

C. EQUIPMENT AND ENVIRONMENT
The test subjects use Microsoft HoloLens 2 to interact with
our experiments. HoloLens 2 includes two displays with
2K resolution and a diagonal field of view (FoV) of 52◦

5https://learn.microsoft.com/en-us/windows/mixed-reality/develop/
native/holographic-remoting-overview. Accessed: 20 August 2023.
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FIGURE 3. Platform architecture.

(43◦ horizontal and 29◦ vertical) [33], [51]. The HoloLens
2 allows users to see and interact (e.g., by scaling, rotating,
and moving) with virtual objects while being visualized in
the real world. However, in our experiments, we only allowed
users to view the PC objects, and the interactionwas onlywith
the feedback user interface (UI) to rate the visual quality of
the test sequences.

Following the recommendations of ITU-RBT.500-15 [22],
our experiments are carried out in a room with grey walls
and low illumination. The tested PCs are placed in the room
and scaled to be life-sized (1.8 m height) to simulate realistic
telepresence scenarios.

D. EXPERIMENT TASKS
We design two tasks for each participant, with both tasks
consisting of 18 sequences of length 10 s. Table 2 describes
the sequences. Before the experiment, participants are asked
to provide some background information, including age,
gender, eyesight, and experience in viewing VR, AR, andMR
content.

1) TASK 1: IMPACT OF VIDEO ENCODING AND
QUALITY SWITCHES
The participant watches nine sequences for each of the
two objects, including three sequences with static quality
(Q1, Q2, and Q3) and six sequences with a quality switch
in the middle of each sequence. The objects are placed 5m
from the participant so that the whole body can be viewed.
Loot and LongDress are used in this task as they belong to
low and high contrast levels, respectively.

2) TASK 2: IMPACT OF VIEWING DISTANCE
The participant watches static-quality sequences of the other
two objects at quality levels Q1, Q2, and Q3 at three
distances:

• D1: 1.25m (only face and shoulder in FoV)
• D2: 2.5m (only upper body in FoV)
• D3: 5m (full body in FoV)
The order of tasks and sequences for each task are ran-

domized for each participant. After watching each sequence,
the participant is asked to rate the perceptual quality
(i.e., 1, 2 – very bad, 3, 4 – bad, 5, 6 – fair, 7, 8 – good,
9, 10 – very good) through the immersive slider shown
in Fig. 4.
After the experiment, participants are asked to provide

feedback on their experience regarding levels of general
discomfort, nausea, sweating, headache, or dizziness that

FIGURE 4. Immersive rating slider within the user interface of the
HoloLens 2 as used during the subjective tests.

FIGURE 5. Frequency of participants watching XR contents.

they may have experienced. Participants also answer a
question of whether they feel the PC objects are part of
the real environment by selecting one of five options:
(i) strongly disagree, (ii) disagree, (iv) neutral, (i) agree, and
(v) strongly agree. The total duration of a single experiment
is approximately 25 minutes.

IV. RESULTS AND DISCUSSIONS
A. PARTICIPANTS
A total of 36 participants, who were recruited from AAU
Klagenfurt, attended the subjective test, including 22 (61%)
males, 13 (36%) females, and 1 (3%) non-binary. 3 (8%)
were in the age group of 18 to 24 years, 18 (50%) were
between 25 and 34, 12 (33%) between 35 and 44, 2 (6%)
between 45 and 54, and 1 (3%) between 55 and 64. The
color vision of the participants is evaluated using the Ishihara
test [11]. Four participants failed this test, so their ratings are
excluded. Hence, the results in this section are gathered from
32 participants which is compliant with ITU-R BT. 500 [22].

Fig. 5 shows how often the participants experienced XR
content. It is clearly seen that most of them have experienced
XR before this subjective test. Only 21% of them have never
watched XR content.

B. TASK 1 — IMPACT OF VIDEO ENCODING
Fig. 6 shows the quality ratings of the participants for the
test sequences at different quality levels and quality switches.
Regarding the sequences with static quality levels (i.e., Q11,
Q22,Q33 in Fig. 6(a)-(c)), it can be seen that objects encoded
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FIGURE 6. Quality ratings for different quality levels and quality switches.

with lower qualities have lower scores. At least 75% of
the viewers gave Loot (LongDress) a rating of 6 (5) or
less for the lowest-quality sequence, Q11. Their medians
are both 4, which means a bad experience. With a higher-
quality sequence, Q22, the median quality scores improve
remarkably to 7 (i.e., good) and 6 (i.e., fair) for Loot and
LongDress, respectively. For the highest-quality sequence,
Q33, there is an improvement in quality ratings, but it is
less remarkable than for Q22. Loot still receives good ratings
from participants, with a median of 8 (i.e., good), while
Longdress achieves ratings ranging from fair (median of 6)
for Q22 to good (median of 7) for Q33. Furthermore, though
Q33 can achieve very good ratings (9 or 10), the majority
(at least 75%) of the participants rate this sequence at nomore
than 8. To statistically validate these claims, we used one-way
analysis of variance (ANOVA) [37] and post-hoc comparison
analysis using Tukey’s honestly significant difference (HSD)
test [5]. According to the ANOVA results shown in Table 3,
there is a significant difference (p < 0.001) between the three
quality levels. Post-hoc pairwise, Tukey’s HSD (see Table 4)
reveals that quality ratings do not differ significantly
(p > 0.05) between Q22 and Q33 for Loot, but do for

TABLE 3. ANOVA results. p < 0.001 (***).

LongDress (p < 0.05). Furthermore, there are significant
p-values (p < 0.001) between Q11 and the others.

C. TASK 1 — IMPACT OF QUALITY SWITCHES
Fig. 6 also describes the participant ratings for different
quality switches, including switching up when the quality
is increased and switching down when the quality is
decreased. There is no remarkable improvement in the quality
scores when the sequence starts at quality Q1 (i.e., Q11,
Q12, and Q13). ANOVA analysis indicates no significant
difference (p > 0.05) among the quality scores for both Loot
(p = 0.07) and LongDress (p = 0.13). This can be attributed
to the severe distortion of Q1 in the initial 5 s that affects the
QoE when watching the entire 10 s video.

Regarding switching down, when the quality changes from
Q2 or Q3 to Q1 (i.e., Q21 or Q31), the quality ratings
are markedly reduced compared to the constant-quality
sequences (Q22 and Q33). However, there are no significant
differences when the quality changes between Q2 and Q3.
We conducted a paired samples t-test [24] to further validate
this observation. It shows non-significant p-values between
Q22 and Q23 (e.g., p = 0.6136 for Loot) as well as between
Q33 and Q32 (e.g., p = 0.1162 for LongDress). More
details can be found in Table 5. Combined with the results
in the previous section, we claim that the end user hardly
recognizes the quality differences between Q2 and Q3. Thus,
we recommend that it is unnecessary to change the quality
fromQ2 toQ3 when the object is viewed at a distance of 5m.
This can remarkably reduce the amount of transferred data.

D. TASK 2 — IMPACT OF VIEWING DISTANCE
Fig. 7 shows the quality ratings of the test sequences at
different viewing distances. It is noticeable that distance
significantly impacts the visual quality of the objects: the
higher the viewing distance, the higher the quality scores. The
reason is that, at a higher distance, it is harder for the viewers
to recognize some quality distortions; thus, they give higher
quality scores, which is comparable to what has been reported
for traditional video sequences [7]. Additionally, we observe
that to achieve the same visual quality, the object should be
encoded with lower QPs (i.e., more data) if viewed closer.
For example, RedAndBlack at quality Q1 is rated on average
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TABLE 4. Tukey’s HSD results. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

TABLE 5. T-test results. p < 0.01 (**), p < 0.001 (***).

4.8 at 5m, and this object must be encoded at Q2 to gain a
similar score (i.e., 4.9) if it is viewed at 1.25m (p = 0.5 in a
paired t-test).

E. IMPACT OF CONTENT CHARACTERISTICS
In this paper, we also evaluate the impact of content
characteristics on the visual perception of participants for
both tasks, as shown in Fig. 8. Loot and RedAndBlack achieve
higher quality ratings in most cases. For example, the quality
scores of Loot and RedAndBlack with quality Q1 viewed at
distanceD3 (i.e., 5m) are 4.5 and 4.8, respectively. Under the
same conditions, these figures for LongDress and Soldier are
4.2 and 3.9, respectively. This can be explained by the fact that
participants are less sensitive to quality distortion/changes
for the content with fewer contrast differences. This finding
extends the results presented in the work [47] on 2D screens
to an AR environment with AR HMDs, in which the texture
of the objects is a crucial factor for viewers.

F. CYBERSICKNESS IN AUGMENTED REALITY
The cybersickness levels of the participants are illustrated
in Fig. 9. Fig. 9a shows that most of the participants did
not feel symptoms of cybersickness in their experiment
session that lasted about 25 minutes. 84% and 81% of

FIGURE 7. Average quality ratings for different distances.

them did not sweat or feel nauseated, respectively. The
most common symptom is dizziness, but only 21% of the
participants reported feeling dizzy during the test. Fig. 9b
provides more details about the symptoms of the participants
who received cybersickness. No one suffers from all the
symptoms mentioned above. There is only one person who
experiences three symptoms, including sweating, headache,
and dizziness. Three participants felt two symptoms, and six
others received one symptom.

On the contrary, in a similar-duration subjective test [43]
where participants were watching videos with four characters
in a room and dolphins in the ocean with VR HMDs,
cybersickness was a serious problem that affected more than
90% of the viewers.

G. OBJECTS’ IMMERSION LEVELS
Fig. 10 shows the immersion levels of digital objects in the
physical world rated by the participants. It can be seen from
the figure that 39% of the participants (strongly) agreed that
the objects were part of the real environment. Only 27% of the
participants (strongly) disagreed with this feeling. Therefore,
the tested objects and HoloLens 2 provide the feeling of
telepresence to some extent. However, some participants
complained about the quality of some parts of the objects,
even at the highest quality level. For example, the hair of
RedAndBlack was perceived as blocky, and the heels of
LongDress were missing in some frames (see Fig. 1).

When we consider the impact of the participants’ fre-
quency of watching XR contents on the immersion level
rating of the tested objects, there are two findings to be
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FIGURE 8. Average quality ratings of participants. It should be noted that
the sequence Qii in Task 1 is equivalent to Qi_D3 (i ∈ {1, 2, 3}) in Task 2
as they are encoded at quality Qi and viewed at 5 m.

noted. First, most participants (5 out of 7 people) who have
never watched XR content do not feel that the test sequences
are real. Second, most experienced participants felt neutral
or agreed that the objects were real. These people may
have a good understanding of how 3D objects look in such
environments, and thus may have lower expectations in terms
of feeling the presence of these digital objects.

H. CORRELATION OF SUBJECTIVE AND
OBJECTIVE METRICS
Fig. 11 shows the scatter plots of the participants’ ratings
represented by the mean opinion score (MOS) versus
objective metrics, i.e., geometry PSNR (gPSNR) and color
PSNR (cPSNR) [23], [32]. Geometry PSNR is calculated
from the distance between each point in the compressed
point cloud and the corresponding point in the reference
point cloud. Color PSNR is based on the error of color in
YCbCr color space [14] of associated points between the
compressed and reference point clouds. These metrics are
computed using the software supplied by Working Group
(WG) 11 of MPEG [28]. Each dot represents a test sequence
viewed at 5m. The lines are fitted using linear regression,
minimizing the squared error. It can be clearly seen that the
considered objective metric is linearly correlated with the
subjective ratings.

FIGURE 9. Cybersickness levels of the participants.

FIGURE 10. Objects’ immersion levels.

The correlation coefficients calculated using the Spearman
and Pearson methods for the MOS with the considered
objective metrics are shown in Fig. 12. With a coefficient
of more than 0.80 in both methods, color PSNR is highly
correlated with the MOS. For geometry PSNR, this value
is 0.62 and 0.69 for the Spearman and Pearson methods,
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FIGURE 11. Correlation between subjective and objective metrics at 5 m
viewing distance.

respectively, which means a moderate correlation with the
MOS. We conclude that color PSNR achieves a better
correlation with the MOS than geometry PSNR.

It should be noted from Fig. 11 that the correlation of
color and geometry PSNRs is dependent on the content.
That means two objects with similar PSNRs might have
significant MOS differences. This motivates us to model the
QoE with machine learning techniques that take into account
the content characteristics.

V. EVALUATION OF MACHINE LEARNING-BASED
QoE MODELS
Previous studies have found that machine learning methods
can be used to effectively model the QoE of traditional,
360◦ and PC videos viewed on 2D screens or VR HMDs [8],
[18], [26], [45]. In this work, we evaluate the performance
of supervised machine learning techniques in predicting the
QoE of PCs in the context of HAS in AR environments.

A. DATA PREPARATION
As described in Section III, we consider four influence
factors, including encoding parameters, quality switching,
viewing distance, and content characteristics. The first two
factors are represented by the values of start and end QPs of
sequences. The content characteristics can be represented by
the bitrate of the encoded bitstream. As can be seen in Table 1,

FIGURE 12. Spearman and Pearson correlation coefficients of the
participants’ ratings (MOS) and the considered objective metrics (cPSNR
and gPSNR).

the objects have different bitrates even at the same quality
level (same QPs).

For this evaluation, each input data record comprises
six features: start G-QP, start T-QP, end G-QP, end T-QP,
viewing distance, and bitrate. The corresponding ratings of
the participants are used as the learning targets. We received
1152 responses in total from 32 participants. After omitting
outliers defined by the interquartile range (IQR) method [54],
1107 responses are used as the input data.

To receive a reliable and unbiased estimate of model
performance, we use leave-one-out cross-validation [55]. The
input data is split into k groups, in which k−1 groups are used
as the training dataset, and the remaining one as the testing
dataset. The process of splitting the data is repeated k times
so that every group is used as a testing dataset once. There
are, in total, 36 test sequences; hence, we have k = 36 so that
the ratings for 35 test sequences are used for training, and the
others are for testing.

B. EVALUATION RESULTS
The work in [53] reported the results of five top-performance
machine learning models in predicting the QoE of point
clouds viewed on a 2D screen. Here, we will apply these
models for QoE prediction in AR environments. Their
performance is reported in Table 6. These models are
implemented using the Python scikit-learn library [31], [53].
There are two classes of the considered models: i) regression
(Gradient Boosting Regressor, Random Forest Regressor,
Decision Tree Regressor, and Polynomial Regression), and
ii) classification (Decision Tree Classifier). While the
former directly predicts the MOS, the latter anticipates the
probability of each class (i.e., rating scores from 1 to 10) of
the QoE distribution. The R2 score and the mean squared
error (MSE) are calculated to evaluate the results. A better
model should retrieve a higher R2 score and a lower MSE.
It can be clearly seen that Gradient Boosting Regressor
outperforms the others with an R2 score of 0.8582 and MSE
of 0.2874.

Fig. 13 shows the correlation of the MOS (from our
subjective test) with respect to the predicted MOS using the
Gradient Boosting Regressor. The predicted MOS is highly
correlated (Pearson correlation coefficient = 0.93) with the
perceivedMOS, which was gathered from our subjective test.
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TABLE 6. Performance of machine learning models in predicting the MOS
of point clouds in AR environments. The bold entry signifies the best
performance.

FIGURE 13. Perceived MOS (from our subjective test) versus predicted
MOS using the gradient boosting regressor. The red line represents the
y = x line.

FIGURE 14. Feature importance scores of input features in gradient
boosting regressor.

Fig. 14 presents feature importance scores of input features
in the Gradient Boosting Regressor model using the Python
scikit-learn library [31]. A higher score means more impor-
tance when building a predictive model. It is highlighted
that the end T-QP plays the most crucial role for Gradient
Boosting Regressor in predicting the QoE, followed by
viewing distance and end G-QP. Their importance scores are
0.32, 0.24, and 0.19, respectively. The content characteristics
represented by the bitrate are the least relevant feature of the
prediction model, with an importance score of 0.05.

Additionally, the examination reveals that classification
models are able to predict the MOS of PCs in AR environ-
ments, though regression models provide better performance.
The best classification model, Decision Tree Classifier,
achieves an R2 score of 0.8155 but is only ranked fifth among
the tested models.

VI. CONCLUSION AND FUTURE WORK
In this paper, we investigate the impact of different factors on
the QoE of point cloud videos in AR environments, including
encoding parameters, quality switches, viewing distance, and
content characteristics. We performed subjective tests with
two separate tasks. The first task evaluates the impact of
encoding parameters, quality switches, and content charac-
teristics. The second task focuses on the impact of viewing
distance and content characteristics. A common point cloud
dataset was encoded usingMPEG’sV-PCC reference encoder
and shown via an AR HMD (Microsoft HoloLens 2). We also
investigate the correlation between the objective metrics and
the participants’ ratings. In addition, several machine learning
models were trained, and we evaluated their performance in
terms of QoE prediction for point clouds in AR environments.

The experimental results show that all of the considered
parameters significantly impact the QoE of point clouds.
We conclude that the QoEwill be decreased if the sequence is
encoded at high QPs and/or switches to lower quality and/or
is viewed at a shorter distance, and vice versa. Additionally,
lower contrast contents in the tested dataset are able to
provide higher QoE.We also suggest that the sequence should
be encoded at lower QPs (i.e., better quality) to maintain
a good quality score when viewed at a shorter distance.
Regarding the correlation of objective metrics and subjective
results, both color and geometry PSNRs show a positive
correlation with the participants’ scores, but the former is
more correlated with a coefficient of more than 0.8 for both
Spearman and Pearson methods. Additionally, cybersickness
does not seem to be a major concern for point cloud-based
AR applications, as less than 22% of the participants felt
considered symptoms. However, the visual quality of point
clouds has not yet reached the level that viewers expect.
Finally, machine learning-based models perform reasonably
well in the prediction of the participants’ ratings. In particular,
the Gradient Boosting Regressor provides the best QoE
prediction among the models considered, with an R2 score
of almost 0.86.

Overall, the results of this study provide valuable insights
into the factors that impact the QoE of point clouds in the
context of HAS in an AR environment. These insights can be
used to improve the quality and performance of point cloud-
based applications. Our results show that the current quality
of PCs compressed by the MPEG V-PCC reference software
TMC2 does not meet viewers’ expectations, suggesting
a need for improved compression algorithms to make
PCs appear more realistic. Additionally, our analysis of
cybersickness is limited to AR telepresence applications
with slow-moving human objects. Further research is needed
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to investigate cybersickness in AR applications with fast-
moving objects, such as first person shooter games. Finally,
a QoE model for PCs should take into account the viewing
distance, as it is one of the major factors in QoE.

In the future, we plan to extend our work in three
directions: (1) develop machine learning-based compression
approaches for PCs, (2) investigate cybersickness in AR
applications with fast-moving objects, and (3) develop a QoE
model for PCs that takes into account the viewing distance.
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