
Scalable MDC-Based Volumetric Video Delivery for Real-Time
One-to-Many WebRTC Conferencing

Anonymous

Anonymous@Anonymous

Anonymous

Anonymous, Anonymous

ABSTRACT
The production and consumption of video content has become a

staple in the current day and age. With the rise of virtual reality

(VR), users are now looking for immersive, interactive experiences

which combine the classic video applications, such as conferencing

or digital concerts, with newer technologies. By going beyond 2D

video into a 360 degree experience the first step was made. How-

ever, a 360 degree video offers only rotational movement, making

interaction with the environment difficult. Fully immersive 3D con-

tent formats, such as light fields and volumetric video, aspire to go

further by enabling six degrees-of-freedom (6DoF), allowing both

rotational and positional freedom. Nevertheless, the adoption of im-

mersive video capturing and rendering methods has been hindered

by their substantial bandwidth and computational requirements,

rendering them in most cases impractical for low latency applica-

tions. Several efforts have been made to alleviate these problems

by introducing specialized compression algorithms and by utilizing

existing 2D adaptation methods to adapt the quality based on the

user’s available bandwidth. However, even though these methods

improve the quality of experience (QoE) and bandwidth limitations,

they still suffer from high latency which makes real-time inter-

action unfeasible. To address this issue, we present a novel, open

source [3], one-to-many streaming architecture using point cloud-

based volumetric video. To reduce the bandwidth requirements, we

utilize the Draco codec to compress the point clouds before they are

transmitted usingWebRTC which ensures low latency, enabling the

streaming of real-time 6DoF interactive volumetric video. Content

is adapted by employing a multiple description coding (MDC) strat-

egy which combines sampled point cloud descriptions based on

the estimated bandwidth returned by the Google congestion con-

trol (GCC) algorithm. MDC encoding scales more easily to a larger

number of users compared to performing individual encoding. Our

proposed solution achieves similar real-time latency for both three

and nine clients (163ms and 166ms), which is 9% and 19% lower

compared to individual encoding. The MDC-based approach, using

three workers, achieves similar visual quality compared to a per

client encoding solution, using five worker threads, and increased

quality when the number of clients is greater than 20.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MMSys’24, April 2024, Bari, Italy
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

CCS CONCEPTS
• Information systems→Multimedia streaming; • Human-
centered computing→ Virtual reality.

KEYWORDS
Volumetric Video, Adaptive Streaming, WebRTC, Virtual Confer-

encing, Multiple Description Coding, Virtual Reality

ACM Reference Format:
Anonymous. 2024. Scalable MDC-Based Volumetric Video Delivery for Real-

Time One-to-Many WebRTC Conferencing. In Proceedings of ACM MMSys
(MMSys’24). ACM, Bari, Italy, 11 pages. https://doi.org/XXXXXXX.XXXX

XXX

1 INTRODUCTION
The increasing demand for remote communication tools such as

Microsoft Teams and Zoom has garnered increased attention in

recent times [23]. Nonetheless, these platforms provide a restricted

interactive experience, as they only allow users to view other par-

ticipants through two-dimensional imagery. Proposals have been

made for immersive six degrees-of-freedom (6DoF) video imple-

mentations which allows users to interact with both rotational and

positional freedom [1]. In the context of these applications, a dis-

tinction should be made based on the interaction requirements of

the users. In the scenario of one-on-one interactions, such as video

calls, a major requirement is having the lowest possible latency to

enable real-time interaction and prevent discomfort while talking to

the other user [37]. For virtual conferences, having many senders

and receivers, the additional demand of being able to adapt the

video content for a large number of users while still maintaining

low latency arises [26]. One-to-many applications, such as a virtual

classroom in the context of education or a virtual concert in the con-

text of entertainment, represent a hybrid category, wherein, instead

of multiple participants generating content, a single peer serves as

the content source, thereby simplifying the system design required

to ensure low latency. Choosing the correct form of communication

is important to ensure that the interactivity requirements are satis-

fied in addition to having an acceptable bitrate and latency. Several

formats exist to facilitate the use of 6DoF content for immersive

applications, which are commonly rendered and displayed on a

head-mounted display (HMD). These formats may be categorized

in two classes of immersive 6DoF video, image-based or volumet-

ric video [47]. Image-based video techniques, such as light fields,

leverage a large quantity of images to generate a new rendered

image based on the viewing angle of the user. Capturing is done

either by a single camera with a multitude of lenses, known as a

lenslet camera, or by utilizing an advanced camera setup using tens

or hundreds of cameras [11]. The choice of camera setup depends

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MMSys’24, April 2024, Bari, Italy Anonymous et al.

on the positional requirements of the application The necessity of

requiring a large quantity of cameras arises from the need to gen-

erate any possible combination of position and tilt while watching

the video [38]. In contrast, volumetric video relies on the utilization

of three-dimensional representations, such as meshes and point

clouds, to depict objects within a 3D environment. Meshes are

characterized by vertices interconnected by edges in order to form

the polygons that are used to render the object. Opposed to point

clouds which exclusively consist of vertices. Furthermore, instead

of using texture mapping, a point cloud uses a color attribute for

each point [9]. These representations are subsequently rendered in

a virtual scene, allowing them to be viewed from different angles

and positions. Similar to image-based video, a specialized camera

setup is required to capture the 3D representation of the object. In

the context of point clouds, several cameras are precisely positioned

around the object to capture it from different angles. This setup

produces multiple distinct point clouds which are subsequently

stitched together to remove the duplicate points and retain a singu-

lar object as the final result [2]. Compared to light field video, this

approach substantially reduces the necessary bandwidth for trans-

mission, as it is no longer required to maintain a large collection of

images for each frame; instead, it suffices to transfer a single 3D ob-

ject. Furthermore, the computational requirements associated with

rendering volumetric video are significantly lower compared to

image-based solutions, which is a necessity for enabling real-time

rendering and interaction at the client side.

Despite the substantial reduction in required bandwidth, the

resulting bitrates are often still too high for contemporary network

infrastructures. The 8i point cloud dataset [16] consists of multi-

ple high resolution point cloud videos, each of which demands a

considerable data rate of up to 5.2Gb/s which can only be used in

very specialized environments with dedicated ultra-high bandwidth

connections [47]. Additional mechanisms, such as compression or

adaptation, are imperative to allow the use of such immersive con-

tent by a variety of users with differing network conditions and

bandwidth restrictions. HMDs exhibit the ability to track both the

position and field-of-view (FoV) through either internal sensors

contained within the headset, which is called inside-out tracking,

or by utilizing external devices strategically positioned within the

user’s environment, which is called outside-in tracking [21]. Lever-

aging FoV and positional data, it becomes feasible to adapt video

content dynamically, rendering only the important details of the

video resulting in significantly lower bandwidth usage.

A major component in ensuring real-time communication is

the choice of transport protocol. TCP-based solutions such as low-

latency HLS (LL-HLS) and low-latency DASH (LL-DASH) do not

offer the real-time latency required for one-to-many and many-to-

many virtual conferencing, because of the overhead introduced by

the forced reliable delivery mechanisms such as acknowledgments,

flow control, retransmissions and packet reordering. UDP-based so-

lutions, such as WebRTC, aim for real-time performance by trading

TCP features such as guaranteed delivery for a significantly lower

latency [7].

This paper proposes a novel end-to-end pipeline designed for

one-to-many applications, containing the following contributions:

Figure 1: A volumetric video streaming architecture.

• A scalable multiple description coding (MDC) quality adap-

tation solution, allowing for higher quality streaming for

a large number of clients (𝑛 > 20) when compared to a per

client encoding solution

• A capture-to-render pipeline that employs WebRTC, which

was adapted to support point cloud streaming, supporting

real-time communication with an average capture-to-display

latency of 163ms

• An adaptive bitrate allocation algorithm, ensuring that each

client receives a quality representation tailored to their net-

work conditions and position within the virtual environment

• A comparative analysis between our proposed MDC-based

approach and an encoding solution optimized per client,

evaluating their respective performance in terms of quality

and scalability

The remainder of the paper is organized as follows. Section 2

provides an overview of the current state of the art concerning

volumetric video streaming. Section 3 introduces our proposed

approach to facilitate the adaptive streaming of volumetric video.

Section 4 presents our evaluation methodology followed by the

results and discussion of our experiments. Finally, Section 5 con-

cludes the paper with a brief overview of the most important results

and potential future work.

2 RELATEDWORK
This section presents an overview of the literature related to the

components required to establish a real-time one-to-many volumet-

ric video streaming architecture, as illustrated in Figure 1. First, we

describe the possible volumetric video representations and captur-

ing methods, followed by an overview of the state-of-the-art point

cloud codecs. For each of these codecs we discuss the advantages

and disadvantages concerning their application in an end-to-end

pipeline. We then explain low-latency delivery mechanisms, quality

adaptation and quality metrics in the context of both traditional

video and volumetric video.

2.1 Volumetric Video and Capturing Methods
Both meshes and point clouds are used as a source of immersive

video content, each having their own advantages and disadvan-

tages. Meshes leverage certain graphics pipeline features and op-

timizations, such as anisotropic filtering, to increase their visual

quality and performance [49]. However, point clouds employ better,

optimized culling and tiling algorithms due to relying purely on

Scalable MDC-Based Volumetric Video Delivery for Real-Time One-to-Many WebRTC Conferencing MMSys’24, April 2024, Bari, Italy

vertices [12]. Additionally, the capturing process is more simplistic

when utilizing point clouds, since the captured points and their

color attribute can be used directly. In contract, meshes require the

captured points to be converted into a geometric topology before

rendering, this process is time consuming and negatively impacts

the overall latency of the system [15]. For the remainder of this

paper, the focus will be on the usage of point clouds as a source of

volumetric video.

LiDAR cameras use reflected lasers to attain a highly accurate

3D representation of a large area at the cost of increased power

consumption [18]. In contrast, depth-based systems employ a stereo-

scopic sensor to estimate the depth for each pixel of a depth im-

age [29]. For volumetric video it is common to use depth cameras

due to their lower cost and power consumption.

2.2 Point Cloud Compression and Codecs
Point cloud compression significantly reduces the required band-

width, two categories of compression codecs can be distinguished:

projection-based and geometric-based codecs. Projection-based

codecs, such as V-PCC, project the point cloud on a 2D plane, al-

lowing existing 2D video codecs to be used on the projection plane.

Contrary, geometric codecs, such as Draco or G-PCC, are designed

to encode the point cloud as a 3D structure [22].

V-PCC employs 2D projections of the point cloud to create an

image containing the different projected views. Subsequently, this

image is encoded using existing video codecs [22]. This method

achieves a high compression ratio at the cost of non-real-time

coding speeds [6].

In contrast to V-PCC, geometric encoders utilize 3D data struc-

tures, such as octrees and kd-tree, to encode the point cloud. Of the

geometric encoders only Draco achieves real-time encoding when

using large point clouds of more than 750,000 points [6].

2.3 Low-Latency Delivery
Given that volumetric video is fundamentally an extension of con-

ventional video, it is feasible to adapt existing 2D video streaming

solutions to incorporate features required to support volumetric

video. Typically, HTTP-based implementations are considered for

their reliable transmissions, which are a prerequisite for most appli-

cations [17]. HTTP adaptive streaming (HAS) represents a widely

adopted approach for achieving adaptive 2D video playback. HAS-

based streaming formats, such as DASH and HLS, divide video

content into segments which are encoded at multiple quality repre-

sentations at varying target bitrates [40]. This process introduces

a latency between 5 and 18 seconds [48], making it unsuitable for

real-time streaming. However, even the low-latency variants, such

as LL-DASH and LL-HLS, are only able to achieve a latency be-

tween 1 and 5 seconds [48], which is still inadequate [10]. The

aforementioned streaming formats utilize TCP, which further in-

creases latency due to overhead created by TCP mechanisms, such

as the TCP handshake or forced reliability [13]. Web real-time com-

munication (WebRTC) is a UDP-based solution, designed specifi-

cally to enable real-time interactive communication [28]. Compared

to other streaming formats, WebRTC achieves a sub one second

delay [48]. Although WebRTC was designed as a peer-based solu-

tion, which presents challenges in the context of scalability, several

server-client architectures have been designed to allow for large

scale low-latency transmissions. Architectures such as multipoint

control unit (MCU) and selective forwarding unit (SFU) employ a

central server responsible for adapting the quality for each user

based on their bandwidth. For these reasons, we will use WebRTC

in the context of a server-client architecture to enable low-latency

adaptive streaming in a multi-client environment.

2.4 Quality Adaptation
The concept of quality adaptation is a well-established practice in

conventional streaming to ensure smooth video playback without

packet loss [36]. Most encoders generate several quality represen-

tations by supplying varying target bitrates [8]. In the context of a

one-to-one scenario, the provided bitrate can be an estimation of

the available bandwidth for the user. However, for a larger number

of users, it becomes unfeasible to have individual encoding, rather,

several default bitrates are carefully chosen to ensure a low latency

and acceptable quality video stream for each user. Alternatively,

rather than employing separate quality levels, a MDC approach

can be adopted. With MDC-based adaptation, the video content is

encoded in individual descriptions that are combined to achieve

varying levels of quality. While these aforementioned adaptation

methods have been designed for 2D video, certain aspects can

adapted and integrated into immersive video scenarios.

In volumetric video, a user is able to alter his viewpoint, causing

objects to fall out of the current viewpoint and making it inefficient

to continue transmitting these objects. Van der Hooft et al. [46]

encode each point cloud object in the scene into several quality

representations. A quality adaptation algorithm is proposed that

uses the FoV and position of the user to determine what quality

representation for each object has to be transmitted to achieve

optimal quality for the available bandwidth. However, a DASH-

based approach is proposed, where the encoded point clouds are

concatenated into segments, making it unsuitable for real-time

communication. An MDC-based approach alleviates this problem,

as it allows for the creation of more quality levels, with less pro-

cessing time. However, currently no MDC-based volumetric video

streaming solution utilizing WebRTC exists.

To adapt the quality an accurate estimation of the bandwidth

is required. Compared to TCP, UDP inherently lacks flow control

and a bandwidth estimation mechanism. Commonly, bandwidth

estimation is implemented at the application layer. Congestion

controllers, such as Google congestion control (GCC) [14] and

Self-Clocked Rate Adaptation for Multimedia (SCReAM) [27], are

implemented in themultimedia application and require an exchange

of control messages between the sender and receiver in order to

estimate the available bandwidth. For this reason, we will utilize

GCC to implement bandwidth estimation in WebRTC.

2.5 Rendering of Volumetric Video
Most rendering solutions are optimized to efficiently render meshes.

Meshes use the triangle primitives of graphics application program-

ming interfaces (APIs) to render their objects efficiently. Schütz

et al. [39] use point primitives to render the point cloud. Addition-

ally, the size of the points is changed to reduce the number of gaps,

increasing the user-perceived quality.

MMSys’24, April 2024, Bari, Italy Anonymous et al.

Figure 2: The system architecture for the individually encoded one-to-many volumetric video streaming solution.

2.6 Quality Metrics
The quality of a volumetric video is contingent on a multitude

of factors. In real-time scenarios, the frame rate might be limited

by bandwidth constraints or due to the latency introduced by the

codec, which negatively impacts the user’s experience [51]. The

assessment of objective quality can be conducted through peak

signal-to-noise ratio (PSNR) metrics, which are categorized into

two types. Tian et al. [41] introduce multiple geometric metrics

which assess the deformation of the mesh or point cloud relative to

the original object, independent of potential viewports. In contrast,

Torlig et al. propose a projection-based approach. This method uses

multiple angles to project the point cloud onto a 2D image, en-

abling the use of existing 2D PSNR metrics. Both of the mentioned

PSNR types suffer from limitation of not being able to prioritize

sections of the object which draw more attention compared to oth-

ers, such as the hands [50], thereby posing challenges in objectively

approximating user-perceived quality.

Video Multi-Method Assessment Fusion (VMAF) is a video met-

ric that combines the scores frommultiple video assessment metrics

in order to produce a single metric, ranging from 0 to 100, that better

correlates to the user-perceived quality [35]. For this reason, VMAF

will be used in this paper to assess the impact of the proposed

approach on the visual quality of the volumetric video.

3 PROPOSED APPROACH
This section provides an overview of the proposed one-to-many

MDC-based volumetric video streaming architecture. Our proposed

architecture is an extension of a simple individually encoded archi-

tecture, an example of which is depicted on Figure 2. The goal of our

architecture is to solve the problems that occur when employing

the architecture illustrated on Figure 2 in terms of scalability. In

this section, we describe the architectural components, their design

choices and innovative methods in detail.

3.1 Depth Camera Capturing
For the acquisition of point cloud data, a single capturing source

is assumed to capture a frontal perspective of an individual. Utiliz-

ing the depth frame, the positions of each point in the cloud are

determined. The color frame is used to map an RGB value to the

corresponding points

3.2 Preprocessing
Our primary focus is on the individual subject, and not on the

(static) surrounding environment. Thus, a rudimentary distance

filter will be applied to retain points that are too far away from

the camera. This filter significantly reduces the number of points,

allowing the available bandwidth to be used more efficiently.

In specific scenarios, a lower quality or sampled point cloud

might be sufficient compared to the version with the full resolution.

In particular, this occurs when viewing distant objects, where it

is more difficult to distinguish the finer details [31]. To streamline

this process, we employ sampling techniques to generate varying

levels of point cloud quality.

In order to prevent inter-frame dependencies, the frames are

exclusively encoded through intra-coding. This ensures that each

frame is able to be decoded independently, leading to an increased

quality when frames need to be dropped in the case of packet loss.

3.3 Quality Adaptation
The initial step of our quality adaptation algorithm is the creation

of diverse quality representations. To facilitate this process, we

propose two distinct methods that are able to create these repre-

sentations. The objective of these methods is to produce a quality

representation for each user, while simultaneously ensuring that

the preprocessing time remains below the inter-frame time for real-

timeliness. Both methods employ the principle of sampling, which

reduces the number of points used in the encoder. We propose to

use a uniform random sampler, as this ensures a balance between

the sampling time and resulting quality [6].

The first method generates a unique quality representation for

each connected client. This is accomplished by estimating the max-

imum achievable sampling rate, using the available bandwidth

together with the frame size to calculate the required compression

factor. This compression factor is used together with the fitted poly-

nomial in Figure 4 to estimate the sampling factor. This polynomial

was created by using a random subset (𝑛=600) of our experimenta-

tion point cloud sequence, for which each frame of this subset was

repeatably sampled across the range of 10% to 100% of the original

point clouds before encoding. The used polynomial depends on the

resolution of the encoded point clouds, as a more dense point cloud

impacts the resulting compression ratios. Figure 2 illustrates the

integration of this method into a WebRTC streaming pipeline. A

Scalable MDC-Based Volumetric Video Delivery for Real-Time One-to-Many WebRTC Conferencing MMSys’24, April 2024, Bari, Italy

Figure 3: The system architecture for the proposed MDC-based one-to-many volumetric video streaming solution, requiring a
fixed number of encoders based on the amount of descriptions, the number of local decoders for each client scales with the
number of received descriptions.

Figure 4: The usage of a fitted polynomial together with the
required compression factor allows to determine the required
sampling rate.

substantial disadvantage of this method is the number of required

encoders being equal to the number of clients. If we want each client

to have a similar preprocessing latency we are required to scale

the number of workers, which is limited by the available computa-

tional resources. Additionally, updating the architecture to support

a many-to-many scenario would require additional computational

resources, further restricting the maximum number of clients.

The second method, which is shown in Figure 3, segments the

point cloud in 𝑛 descriptions, each containing distinct points. The

combination of these descriptions permits access to additional qual-

ity representations. Consequently, this approach facilitates the

streaming of 2
𝑛 − 1 possible combinations of quality represen-

tations. To generate the available descriptions, three approaches

are suggested:

• Percentage: Use 𝑛 fixed percentages to sample the point

cloud, creating 𝑛 descriptions that each contain a fraction

𝑝𝑖 of the points with 𝑖 in 1, ..., 𝑛 which corresponds with the

respective percentage

• Fixed Size: Limit the number of points to 𝑥 , with 𝑥 being

an expected lower limit, by randomly sampling 𝑥 points.

Afterwards use the first approach to create 𝑛 descriptions

• Fixed Bitrate: Leverage the polynomial, illustrated in Fig-

ure 4, to estimate 𝑛 sampling percentages necessary for cre-

ating 𝑛 descriptions with varying bitrate targets

Using Algorithm 1 we first calculate the rotation matrix and

viewing angles by utilizing the yaw, pitch and roll of the camera.

Following this we calculate the distance of the user to the streamed

object. Subsequently we use the viewing angle, FoV and distance

Algorithm 1 Bitrate allocation using FoV and position to calculate

the transmitted descriptions.

1: 𝑅 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (𝑦𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ, 𝑟𝑜𝑙𝑙)
2: 𝑣𝑖𝑒𝑤𝐴𝑛𝑔𝑙𝑒𝑠 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑛𝑔𝑙𝑒𝑠 (𝑅)
3: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑈𝑠𝑒𝑟 (𝑢𝑠𝑒𝑟𝑃𝑜𝑠, 𝑐𝑙𝑖𝑒𝑛𝑡𝑃𝑜𝑠)
4: 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ← 𝑔𝑒𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑓 𝑜𝑣, 𝑣𝑖𝑒𝑤𝐴𝑛𝑔𝑙𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
5: 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 ← 𝑔𝑒𝑡𝐴𝑙𝑙𝑜𝑤𝑒𝑑𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦)
6: for each 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 do
7: if 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 >= 𝑔𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 (𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) then
8: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 − 𝑔𝑒𝑡𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 (𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛)
9: 𝑎𝑑𝑑𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑇𝑜𝐹𝑟𝑎𝑚𝑒 (𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛)
10: end if
11: end for

Figure 5: Quality category is assigned based on distance and
field of view.

to impose restrictions on the maximum achievable quality that can

be transmitted to the client. Figure 5 illustrates the working of this

mechanism. The high-quality representations will only be available

for transmission to the user if the object is close and directly in

the FoV of the user. Furthermore, if the object is outside of the

FoV, or too far away from the user, no frame will be transmitted.

Consequently, we are able to calculate the allowed descriptions, of

which an example implementation is shown in Table 1. For individ-

ual encoding, Table 1 shows the maximum allowed sampling rate

and, for the MDC approaches it indicates the allowed combinations

of descriptions. Finally, we iterate over the allowed descriptions,

starting from the highest quality description, and validate if there

is enough remaining bandwidth to add the description.

3.4 WebRTC-Based Delivery
As we strive for the lowest possible latency, we utilize WebRTC to

ensure real-time communication between capturing and rendering

MMSys’24, April 2024, Bari, Italy Anonymous et al.

Table 1: Example implementation of the possible quality lev-
els of MDC encoding through the combination of description
(higher description ID = greater quality).

Quality Category Description IDs Used % of Points
in Cloud

Low Quality 1 ∼15%
Medium Quality 2 ∼25%

1, 2 ∼40%
High Quality 3 ∼60%

1, 3 ∼70%
1, 2 ∼85%
1, 2, 3 ∼100%

components. Our pipeline is focused on a one-to-many scenario,

which results in a central server at the capturing side that is con-

nected to each client. The central server is based on MCU and SFU

architectures, sharing similar responsibilities such as quality adapta-

tion. Contrary to MCU and SFU, the central server is uni-directional

and only transmits frames to the client. The clients connect to the

server using a signaling algorithm. WebRTC does not specify how

the signaling process should be implemented. However, recent ef-

forts have been made to standardize signaling, to allow for easier

integration of different WebRTC-based systems. Prior to streaming

the video, an exchange of the session description protocol (SDP) of

both the server and the client takes place. These SDP messages alert

the other application of the available network routes, as well as the

supported codecs. In the event a requested codec is not supported

by the the other side of the connection, a back-off occurs and the

connection is terminated.

Furthermore, as a measure to address potential packet loss, we

opt for the usage of negative acknowledgments (NACKs) to transmit

lost packets. The utilization of NACK packets serves the purpose

of ensuring that frames remain decodable in the event of packet

loss, assuming the packet loss remains within a certain margin.

Currently, no partial decode and rendering is supported by the

architecture, requiring the full frame to be received. Compared to

ACK control messages, NACK packets are only sent for packets

that were not received by the client, lowering the overhead of the

control messages. Given thatWebRTC rearranges packets to achieve

sequential ordering, NACK packets are commonly employed to

detect packet loss when gaps in sequence numbers occur.

In addition to transmitting the position and FoV, the WebRTC

client also transmits feedback messages to the server which are

subsequently used by the congestion control algorithm of the server

to estimate the bandwidth, allowing for the quality adaptation to

take place.

3.5 Virtual Reality Interactivity and Rendering
Due to the sampling that occurs in the quality adaptation algorithm,

gaps will occur in the lower quality representations. In order to

increase the perceived quality we increase the point size based on

the sampling ratio, an example of this can be observed in Figure 6.

To facilitate an immersive experience, a simple rendering solu-

tion is not sufficient. To allow for interactivity with the environ-

ment, the point cloud needs to be displayed on an HMD. There are

two methods of doing this: either by rendering on the HMD itself,

or by having a remote system render the point cloud at the correct

(a) 40% sampled point cloud (b) Upscaled point cloud

Figure 6: Increasing the size of the rendered points enables
a simple and fast upscaling method. Point size is illustrated
left of the person as a dot.

Figure 7: Hardware configuration used in the experimental
setup.

position, and transmit a video stream to the HMD with the ren-

dered frames. In Section 4, the latter approach will be considered,

for increased computational resources at the decode side.

3.6 VMAF in Volumetric Video
In the context of volumetric videos, VMAF is used by capturing

the rendered view at either a fixed viewpoint or by using captured

movement traces which allows the viewpoint to be changed during

the video [44]. In contrast to PSNR-based metrics, VMAF thus

produces a metric that corresponds to the imagery as perceived by

the user [19].

4 EVALUATION AND DISCUSSION
This section first presents the experimental setup, providing all

hardware and implementation details. Then, we discuss the con-

sidered evaluation metrics. Subsequently, we present and discuss

the results of several experiments related to the proposed WebRTC-

based framework namely: the capturing delay, scalability of the

encoder, bandwidth usage, VMAF quality, throughput and latency

of WebRTC, and finally an overview of the total end-to-end latency.

4.1 Experimental Setup
We perform the experiments concerning preprocessing latency,

scalability and VMAF quality on a machine with the following

specifications: CPU: Intel 12th Gen i7-1265u (4.8 GHz Turbo), RAM:
16GB DDR4 (3200 MHz). The throughput and WebRTC latency

experiments are carried out at the Anonymous [4] (omitted for

anonymity), a test bed with a large number of interconnected bare

metal nodes. We use several connected bare metal nodes with the

following hardware specifications; CPU: Intel Xeon E5520 (2.27GHz),
RAM: 12GB DDR3 (1066 MHz), NIC: 1Gb/s. We apply traffic control

on the switch nodes in order to limit the available bandwidth, no

artificial latency is added. The full setup is illustrated on Figure 7.

To evaluate the suggested approaches with the same data, we use

a captured point cloud sequence of 1800 frames [5]. This sequence

Scalable MDC-Based Volumetric Video Delivery for Real-Time One-to-Many WebRTC Conferencing MMSys’24, April 2024, Bari, Italy

Figure 8: Two example 4G bandwidth traces.

contains point clouds generated from a single camera, with alternat-

ing sequences of little to no movement and hand gestures to mimic

possible behavior during a conversation. Additionally, to achieve

realistic results, we employ a dataset containing 4G traces [45] in a

subset of our experiments to simulate fluctuating bandwidth. This

dataset is used in the following experiments: scalability, bandwidth

usage and VMAF quality. Two example traces are shown in Figure 8.

To capture this sequence, we have used an Intel Realsense D455

depth camera [24] at a frame rate of 30 FPS and a resolution of

848x480 pixels. The laser power of the depth sensor was increased

to its maximum value of 360 to increase visual quality and reduce

the number of holes in the resulting point cloud.

The preprocessing steps (background removal, sampling and

encoding) were collocated with the capturing component, utilizing

the same hardware. However, due to the requirement of having

a fully implemented congestion controller, we have implemented

both the WebRTC server and client in separate applications us-

ing Golang [20] together with the Pion package [34]. Both the

preprocessing and rendering applications interact with their re-

spective WebRTC counterpart using a UDP socket to transfer the

required data. We have opted for GCC as the congestion controller

implementation to estimate the bandwidth using the transport wide

congestion control (TWCC) messages transmitted by clients.

For the adaptation methods we utilize the polynomial depicted

in Figure 4 for estimating the required sampling rate of the indi-

vidual and bitrate-based MDC encoders. For the MDC encoders

we use the implementation shown in Table 1 to divide our point

clouds into three descriptions that enable seven possible quality

representations.

The rendering application uses the Unity [43] game engine. In

order to render the point clouds we use the Pcx [33] package, using

the included custom shader to render the vertices as individual

points. We display the Unity rendered frames in the Meta Quest 2

HMD [30].

4.2 Evaluation Metrics
Based on the discussion in Section 2 and Section 3 we use the

following metrics to evaluate the performance of each component.

First, we evaluate the latency introduced in the capturing compo-

nent by the Intel Realsense D455 camera. We have used a separate

application to calculate the time between the rendering of a binary

clock on a display and the capturing of the rendered image.

Second, we evaluate the scalability of the individual and MDC-

based encoders by using multiple configurations, each having a

different number of simulated clients. We use the preprocessing

time and achieved FPS in order to estimate how well the systems

are able to scale with an increasing number of clients.

Table 2: Capturing delay analysis of the Intel RealSense cam-
era, model D455 for the Ubuntu 22.04 and Windows 11 oper-
ating systems.

Resolution FPS Latency (ms)
Ubuntu 22.04 Windows 11

424x240 30 70 91

60 39 64

640x480 30 80 98

60 45 67

848x480 30 85 104

60 46 65

1280x720 30 100 115

60 n/a n/a

Third, we evaluate bandwidth usage with two metrics. Firstly, we

examine the average bandwidth required to transmit a point cloud

sequence at 30 FPS for the different adaptation approaches. The

second metric measures the efficacy of our encoding strategies in

harnessing the available bandwidth, specifically the error between

the resultant bitrates and the available bandwidth.

Fourth, quality is evaluated by using the VMAF metric from a

single fixed viewpoint. In order to get an accurate estimate we have

employed the 4G bandwidth traces of Van Der Hooft et al. [45] to

generate frames of varying qualities. Additionally, for the MDC

encoders we also show the achieved VMAF score of each of the

seven representations.

Fifth, we evaluate the WebRTC component by observing the

achieved throughput and latency with two possible link bandwidth

configurations, 50Mbit/s and 100Mbit/s.
Sixth, we give a breakdown of the overall end-to-end latency of

our proposed implementation compared to individual encoding for

multiple client configurations.

4.3 Camera Capturing Delay
An evaluation of the capturing delay introduced by the camera

system has been conducted in order to assess the impact of resolu-

tion and frame rate. This experiment was performed by using the

latency tool included in the SDK [25]. The tool renders a binary

clock onto the display screen, that is subsequently captured by the

camera. The captured frame is processed within the application

utilizing the OpenCV library [32], which extracts the value of the

binary clock from the frame and compares it with the current value.

Table 2 presents the delay measurements for multiple resolutions at

both 30 and 60 FPS. the application’s performance was evaluated on

two distinct operating systems, namely Ubuntu 22.04 and Windows

11, utilizing identical hardware configurations. Notably, Ubuntu

22.04 exhibits superior performance compared to Windows 11. The

exact reasoning of this phenomenon is difficult to determine as it

depends on a variable number of factors, such as driver and system

call differences. Additionally, the Windows 11 version also exhibits

inconsistent behavior, leading to increased delay throughout the

application’s runtime. It becomes apparent from Table 2 that the

frame rate has a greater impact on the delay when compared to the

resolution. However, the adaption of 60 FPS requires significantly

more bandwidth and computational resources, thereby posing chal-

lenges in maintaining real-time performance.

MMSys’24, April 2024, Bari, Italy Anonymous et al.

Table 3: Individual encoding latency for multiple client com-
positions using five encoder threads, CPU: Intel 12th Gen
i7-1265u (4.8GHz Turbo), RAM: 16GB DDR4 (3200 MHz).

Clients Latency (ms) FPS

Mean Std

5 14.87 5.78 29.12

10 32.43 16.32 18.34

20 55.99 29.16 9.65

40 97.81 51.28 5.46

4.4 Encoding Scalability
The encoding constitutes the predominant contribution to latency

within the preprocessing step of our pipeline. The latency associ-

ated with the other preprocessing operations, i.e., the background

removal and sampling, are negligible (mean of 3ms) compared to

the encoding. The encoding latency depends on several factors such

as the number of points, the density and the color similarities of

neighboring points. Figure 9 illustrates this effect, indicating that

the encoding time scales linearly with the size of the point cloud.

In the context of individual encoding, a unique quality represen-

tation has to be encoded for each client. Thus, additional clients

increase the total time spent preprocessing a single frame. Natu-

rally, by encoding individual streams in parallel, this impact can

be reduced. Table 3, shows the impact of using five worker threads

with a varying number of clients. In this system configuration, we

wait until all clients are done encoding before capturing the next

frame, resulting in a lower frame rate when the number of clients

increases. To ensure that the system remains at a consistent 30 FPS,

it is imperative to scale the number of worker threads proportion-

ately to the number of clients. Additionally, the implementation of

a circular buffer for worker threads enables the encoding of consec-

utive frames whilst certain clients are still encoding the previous

frame. On a machine with the following specifications: CPU: Intel
12th Gen i7-1265u (4.8GHz Turbo), RAM: 16GB DDR4 (3200 MHz)
and with five simulated clients, we achieve similar preprocessing

times by employing only three threads, with an average of 18.27ms

(std=4.56ms). From this, we infer that an equal amount of workers

is not requisite for the number of clients and that the number of

required workers can be estimated with the following equation:

𝑛
threads

= 𝑛
clients

× Mean Encoding Time

Interframe Time

(1)

However, under the assumption of a singular machine with a

limited capacity of twelve threads, the system is still only able to

service a modest number of clients. Additionally, as shown in Figure

9, the encoding time scales linearly with the requested sampling

rate, making the number of required workers highly correlated

with the requested number of quality representations.

MDC encoding alleviates this problem by having a fixed num-

ber of descriptions that are used to construct additional quality

levels. In addition, the utilization of sampled descriptions reduces

the maximum number of points used in a single encoding opera-

tion, lowering the overall encoding time. These descriptions are

encoded in parallel in order to reduce the total required encoding

time. As a result, the encoding time of a frame is restricted to the

size of the largest description compared to the number of clients.

Figure 9: Linear scaling of encoding time with sampling rate.

Figure 10: MDC encoding approaches are improved by encod-
ing the three descriptions in parallel, using one worker for
each description.

Figure 10 depicts the increased encoding performance when ap-

plying parallelization. MDC limits the number of required worker

threads to the number of descriptions, making it more suited for a

system with reduced computational resources or a large number of

clients. Similar performance gains are achieved at the client side by

applying parallel decoding to the descriptions.

Comparing the average preprocessing time (30 iterations, se-

quence of 1800 frames) of the individual encoder against the MDC

encoder, we observe that the individual encoder (five clients, five

workers) attains an average time of 14.87ms (std=5.78ms) ver-

sus the MDC encoder (three descriptions, three workers) which

achieves an average of 16.16ms (std=1.82ms). Evidently, the pre-

processing time of the individual encoding approach suffers greatly

from the large range of possible sampling rates, with the higher

rates significantly increasing the maximum encoding time, creating

a much more variable preprocessing time. One approach to mitigate

this problem would be the implementation of MDC into the indi-

vidual adaptation method. A viable strategy could entail imposing

a limit which only allows 50% of the point cloud to be encoded in

a single thread, while the remainder of the points is encoded in a

separate thread. Additionally, this would allow reuse of the 50%

description by multiple clients, further reducing the encoding time

in favor of compression efficiency.

4.5 Bandwidth Usage
The MDC encoder produces seven possible representations for

each frame, these are created from three base descriptions which

correspond to approximately 15%, 25% and 60% of the points in the

original cloud. Table 4 shows the resulting bitrates for each MDC

approach. It is clear from this table that the MDC approach satisfies

a range of varying bandwidths between 12Mbit/s and 75Mbit/s.
In order to protect against an underestimation of the required

sampling rate and the non-instant update nature of the bandwidth

estimator we opted to use a safeguard which limits the bitrate avail-

able to the encoder to 90% of the estimated bandwidth. Without

Scalable MDC-Based Volumetric Video Delivery for Real-Time One-to-Many WebRTC Conferencing MMSys’24, April 2024, Bari, Italy

Table 4: Resulting bitrates (Mbit/s) for the different MDC
quality representations, with 15%, 25% and 60% being the
base descriptions used to generate the other representations.

15% 25% 40% 60% 75% 85% 100%

Fixed Size 11.9 18.6 30.6 39.9 51.8 58.5 70.5

Fixed Bitrate 12.6 19.6 32.1 41.2 53.6 60.8 73.3

Percentage 12.7 19.8 32.0 42.4 55.0 62.1 74.8

Figure 11: Resulting bitrates for all encoding approaches.

this safeguard bandwidth usage hovers above 100%, causing in-

tolerable packet loss. Although the MDC methods never supply

a bitrate greater than the estimate, we opt to use the same safe-

guard to protect against the non-instant update. When applying

this to the bandwidth traces from Van Der Hooft et al. the individ-

ual encoder achieves a bandwidth usage of 90.4% of the estimated

bandwidth, which results in an average of 3.17Mbit/s of bandwidth
being wasted. Due to having only a limited number of representa-

tions the MDC approaches only reach an average bandwidth usage

of 75%, which comes down to 7.88Mbit/s being wasted. Figure 11
depicts the average resulting bitrate for each encoding approach

when employing the 4G traces.

4.6 VMAF Quality
VMAF allows us to measure impact of increasing the point size in

order to increase the perceived quality. Table 5 presents the results

for varying point size across all possible quality representations

obtained from the MDC encoder. The comparison is made between

sampled frames and rendered frames of the original point cloud. In

rendering the original cloud, a point size of 0.3 (Unity units) was

adopted, as lower values introduce gaps in the point cloud when

viewing it from the fixed viewpoint. From Table 5, we discern the

significant impact of increasing the point size on the resulting qual-

ity. However, it is imperative to exercise caution to only increase

the point size when necessary to avert a compromise in quality.

The impact of this is notably visible in the higher quality represen-

tations where an approximate 30% decline in quality occurs upon

doubling the point size. For the individual encoder, we employ a

similar upscaling methodology. However, for this encoder we pick

the MDC point size of which the sampling rate is the closest to the

individual sampling rate. For example, if a individual client requires

a sampling rate of 20%, a point size of 0.06 is chosen, and for a

sampling rate of 43%, a point size of 0.05 is selected.

Table 6 shows the achieved VMAF score for each of the seven

quality representations. We observe that the three variations offer

similar performance when it comes down to the visual quality

of the resulting FoV. When compared to the VMAF scores of the

individual encoding approach, for a varying number of clients, we

Figure 12: Throughput obtained when using the fixed size
MDC approach for 50 Mbit/s and 100 Mbit/s.

can see that the MDC-based approach scores better when at least

twenty clients are involved (see Table 7, sequence of 1800 frames).

This phenomenon can be explained by the fact that the used point

cloud sequence also has segments with little to no movement which

result in a high VMAF score, even at lower frame rates. The standard

deviation of the experiments below indicate this as well. From the

data in Table 7, we conclude that the MDC approach works well

in environments with many clients or for volumetric videos that

suffer from at a low frame rate.

4.7 Throughput and WebRTC Latency
The goal of our pipeline is being able to adapt its content based on

the available bandwidth, while still maintaining a latency suited for

real-time communication. In order to test the achievable throughput

andWebRTC latency we use two different link capacities, 50Mbit/s
and 100Mbit/s. We motivate the use of the 50Mbit/s capacity due

to it being below the maximum required bandwidth, while still

allowing for a sufficient number of quality representations. In this

experiment, we employ the fixed-size MDC encoder due to it having

the most consistent resulting bitrates, as a stable bandwidth makes

it easier for the congestion controller to converge. Figure 12 depicts

the results of this experiment, we observe that the 100Mbit/s link
reaches a stable bitrate of 70.6Mbit/s. Using Table 4, we observe

that this corresponds to the bitrate of the highest quality repre-

sentation. Contrary, the 50Mbit/s link stabilizes at 30.6Mbit/s,
corresponding with the 40% representation. However, even with

the 90% safeguard this link should be able to achieve bitrate of the

60% representation. Figure 12 indicates that this behavior is due

to the GCC algorithm not being able to recover after an overesti-

mation which subsequently caused packet loss. By analyzing both

figures, we can conclude that the GCC algorithm takes a significant

time before converging to a stable estimation. This phenomenon is

related to the initial bitrate of GCC, which was set to the minimum

required bandwidth. Increasing the initial bitrate speeds up the

convergence at the cost of causing packet loss for low bandwidth

links. In the case of the 50Mbit/s link, convergence is observed
around 30Mbit/s. Referring to Table 4, this corresponds to a quality
level of 40% with an average VMAF score of 67.56.

In terms of latency, 100Mbit/s link achieves an average transport
latency of 30.89ms (std=10.22ms) compared to the result of the

50Mbit/s link which achieves 24.42ms (std=5.68ms). Both results

are acceptable to use in a real-time environment. The lower latency

of the 50Mbit/s link is attributed to the lower throughput and

indicates that the GCC algorithm ensures a good balance between

estimated bandwidth, latency and potential packet loss.

MMSys’24, April 2024, Bari, Italy Anonymous et al.

Table 5: VMAF scores for all possible quality and size combinations for point sizes 0.03 to 0.09.
15% 25% 40% 60% 75% 85% 100%

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.03 4.99 2.72 24.06 2.93 47.38 2.68 68.58 2.17 78.69 1.6 83.42 1.26 88.06 0.84
0.04 22.03 2.93 44.46 2.66 65.28 1.87 75.82 1.08 77.65 0.82 77.74 0.73 77.18 0.75

0.05 33.98 2.85 55.26 2.13 67.56 1.14 68.98 1.03 67.9 1.01 67.0 1.0 65.64 1.06

0.06 41.53 2.58 57.22 1.44 61.16 1.11 59.05 1.22 57.38 1.21 56.46 1.32 55.18 1.3

0.07 44.72 2.08 52.31 1.49 50.88 1.34 47.71 1.5 45.96 1.58 44.99 1.56 43.84 1.58

0.08 42.89 1.68 44.32 1.54 40.81 1.58 37.66 1.72 36.02 1.75 35.14 1.78 34.12 1.85

0.09 37.87 1.58 35.82 1.65 31.5 1.72 28.7 1.83 27.34 1.99 26.52 1.85 25.66 1.9

Table 6: VMAF scores for MDC approaches with fixed quality.
15% 25% 40% 60% 75% 85% 100%

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Fixed Size 44.52 2.13 57.05 1.7 67.69 1.16 75.84 1.11 78.73 1.58 83.24 1.31 88.05 0.8

Fixed Bitrate 49.99 1.84 61.01 1.29 69.35 1.04 72.98 1.42 76.25 1.57 83.87 1.16 89.32 0.61

Percentage 46.62 1.93 58.64 1.48 68.61 1.08 76.71 0.82 81.71 0.69 85.9 0.59 89.76 0.47

Table 7: VMAF scores for a sequence of 1800 frames for both
MDC-based approaches versus individual encoding, using
three descriptions for the MDC-based approaches.

Clients FPS VMAF Score

Mean Std

Individual Adaptive 5 30 67.98 11.93

Frame Rate 10 20 67.67 13.50

20 10 65.90 16.48

40 5 58.47 19.20

Fixed Size 𝑛 30 65.98 9.01

Fixed Bitrate 𝑛 30 65.12 11.63

Percentage 𝑛 30 66.64 7.39

4.8 End-to-End Latency Breakdown
Figure 13 illustrates the complete end-to-end latency for both en-

coding approaches, with no artificially added link delays. For this

experiment we have used the fixed frame sequence with three work-

ers. However, we have added the camera latency for completeness.

We have deployed two instances of the client application on each

node when increasing the number of clients to eight. Each client is

assigned 100Mbit/s bandwidth using tc.

Evidently, the capturing component has the most substantial

influence, constituting between 50% and 64% of the total latency.

However, the use of a different, more optimized camera would

yield immediate improvements in the capturing component of the

pipeline. Overall, we observe that our pipeline is able to stream a

volumetric video captured at a frame rate of 30 FPS and a resolution

of 848x480 pixels with a low enough latency to enable real-time

communication. When increasing the number of clients the MDC-

based approach is able to maintain a stable latency compared to

individual encoding, which has an increased encoding time due to

the limited number of workers.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed a novel one-to-many architecture for

facilitating the streaming of volumetric videos. We conducted a

Figure 13: Composite latency of each described component
in the proposed architecture, with no artificial link delays,
using three worker threads.
comparative analysis of various encoding and adaptation strate-

gies. Our findings indicate that an individually encoded quality

representation for each client yields the best results for a limited

number of clients. To address scalability concerns, we introduce a

MDC-based approach which utilizes several distinct descriptions to

construct multiple quality representations. Despite exhibiting com-

paratively inferior ideal bandwidth utilization and objective quality,

the MDC approach demonstrates superior scalability, achieving

equivalent preprocessing times with a substantially reduced num-

ber of workers. Compared to per client encoding, we observe 9%

lower end-to-end latency (163ms vs 182ms) with three clients and

19% (166ms vs 204ms) when increasing the number of clients to

eight. We conclude that our pipeline is able to produce an accept-

able latency with a visually quality comparable to the individual

encoder in low client environments, and is able to produce higher

average quality in environments with more than 20 clients.

In future work, we will focus on extending the architecture to

allow for many-to-many streaming of volumetric video, facilitating

the need to implement an MCUWebRTC architecture. Furthermore,

the extension of multiple input clients will require us to improve the

encoder and adaptation algorithms in order to achieve acceptable

bitrates and visual quality in scenes with a large number of clients.

An extension will also be made to allow for the use of multiple

cameras, which will be evaluated through VMAF scores for multiple

viewpoints.

Scalable MDC-Based Volumetric Video Delivery for Real-Time One-to-Many WebRTC Conferencing MMSys’24, April 2024, Bari, Italy

REFERENCES
[1] Sun Joo Ahn, Laura Levy, Allison Eden, Andrea Stevenson Won, Blair Mac-

Intyre, and Kyle Johnsen. 2021. Ieeevr2020: exploring the first steps toward

standalone virtual conferences. Frontiers in Virtual Reality, 2, 648575.
[2] Dimitrios S Alexiadis, Dimitrios Zarpalas, and Petros Daras. 2012. Real-time,

full 3-d reconstruction of moving foreground objects from multiple consumer

depth cameras. IEEE Transactions on Multimedia, 15, 2, 339–358.
[3] [SW], Anonymous (will change to repo when accepted) 2023. url: Anonymous.

[4] [SW], Anonymous 2023. url: Anonymous.

[5] [SW], Anonymous Point Cloud Sequence 2023. url: https://github.com/anon

ymous4674/sequence.

[6] Anonymous. [n. d.] Anonymous.

[7] Muhammad Ajmal Azad, Rashid Mahmood, and Tahir Mehmood. 2009. A com-

parative analysis of dccp variants (ccid2, ccid3), tcp and udp for mpeg4 video

applications. In 2009 International Conference on Information and Communica-
tion Technologies. IEEE, 40–45.

[8] Sung-Ho Bae, Jaeil Kim, Munchurl Kim, Sukhee Cho, and Jin Soo Choi. 2013.

Assessments of subjective video quality on hevc-encoded 4k-uhd video for

beyond-hdtv broadcasting services. IEEE Transactions on Broadcasting, 59, 2,
209–222.

[9] Maarten Bassier, Maarten Vergauwen, and Florent Poux. 2020. Point cloud vs.

mesh features for building interior classification. Remote Sensing, 12, 14, 2224.
[10] Nassima Bouzakaria, Cyril Concolato, and Jean Le Feuvre. 2014. Overhead and

performance of low latency live streaming using mpeg-dash. In IISA 2014, The
5th International Conference on Information, Intelligence, Systems and Applica-
tions. IEEE, 92–97.

[11] Michael Broxton et al. 2020. Immersive light field video with a layered mesh

representation. ACM Transactions on Graphics (TOG), 39, 4, 86–1.
[12] Keming Cao, Yi Xu, and Pamela Cosman. 2020. Visual quality of compressed

mesh and point cloud sequences. IEEE Access, 8, 171203–171217.
[13] Neal Cardwell, Stefan Savage, and Thomas Anderson. 2000. Modeling tcp

latency. In Proceedings IEEE INFOCOM 2000. Conference on Computer Com-
munications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No. 00CH37064). Vol. 3. IEEE, 1742–1751.

[14] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2016.

Analysis and design of the google congestion control for web real-time com-

munication (webrtc). In Proceedings of the 7th International Conference on Mul-
timedia Systems, 1–12.

[15] YanCui, Sebastian Schuon, Derek Chan, Sebastian Thrun, andChristian Theobalt.

2010. 3d shape scanning with a time-of-flight camera. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. IEEE, 1173–
1180.

[16] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A Chou. 2017. 8i voxelized

full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document WG11M40059/WG1M74006, 7, 8, 11.

[17] Qin Dai and Ralf Lehnert. 2010. Impact of packet loss on the perceived video

quality. In 2010 2nd International Conference on Evolving Internet. IEEE, 206–
209.

[18] César Debeunne and Damien Vivet. 2020. A review of visual-lidar fusion based

simultaneous localization and mapping. Sensors, 20, 7, 2068.
[19] Boni García, Luis López-Fernández, Francisco Gortázar, and Micael Gallego.

2019. Practical evaluation of vmaf perceptual video quality for webrtc applica-

tions. Electronics, 8, 8, 854.
[20] [SW], Golang 2023. url: https://go.dev/.

[21] Michael J Gourlay and Robert T Held. 2017. Head-mounted-display tracking

for augmented and virtual reality. Information Display, 33, 1, 6–10.
[22] Danillo Graziosi, Ohji Nakagami, ShinrokuKuma, Alexandre Zaghetto, Teruhiko

Suzuki, and Ali Tabatabai. 2020. An overview of ongoing point cloud com-

pression standardization activities: video-based (v-pcc) and geometry-based

(g-pcc). APSIPA Transactions on Signal and Information Processing, 9, e13.
[23] Janine Hacker, Jan vom Brocke, Joshua Handali, Markus Otto, and Johannes

Schneider. 2020. Virtually in this together–how web-conferencing systems

enabled a new virtual togetherness during the covid-19 crisis. European Journal
of Information Systems, 29, 5, 563–584.

[24] [SW], Intel Realsense 2023. url: https://www.intelrealsense.com/.

[25] [SW], Intel RealSense SDK 2 2023. url: https://www.intelrealsense.com/sdk-2/.

[26] Jack Jansen, Shishir Subramanyam, Romain Bouqueau, Gianluca Cernigliaro,

Marc Martos Cabré, Fernando Pérez, and Pablo Cesar. 2020. A pipeline for

multiparty volumetric video conferencing: transmission of point clouds over

low latency dash. In Proceedings of the 11th ACMMultimedia Systems Conference,
341–344.

[27] Ingemar Johansson. 2014. Self-clocked rate adaptation for conversational video

in lte. In Proceedings of the 2014 ACM SIGCOMM workshop on Capacity sharing
workshop, 51–56.

[28] Alan B Johnston and Daniel C Burnett. 2012. WebRTC: APIs and RTCWEB
protocols of the HTML5 real-time web. Digital Codex LLC.

[29] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya

Bhowmik. 2017. Intel realsense stereoscopic depth cameras. In Proceedings of
the IEEE conference on computer vision and pattern recognition workshops, 1–10.

[30] [SW] Meta, Meta Quest 2 Virtual Reality Headset 2023. url: https://www.met

a.com/quest/products/quest-2.

[31] Minh Nguyen, Shivi Vats, Sam Van Damme, Jeroen Van Der Hooft, Maria

Torres Vega, Tim Wauters, Christian Timmerer, and Hermann Hellwagner.

2023. Impact of quality and distance on the perception of point clouds in

mixed reality. In 2023 15th International Conference on Quality of Multimedia
Experience (QoMEX). IEEE, 87–90.

[32] [SW], OpenCV 2023. url: https://opencv.org/.

[33] [SW] keijiro, https://www.meta.com/be/en/quest/products/quest-2/ 2023. url:

https://github.com/keijiro/Pcx.

[34] [SW], Pion WebRTC 2023. url: https://github.com/pion/webrtc.

[35] Reza Rassool. 2017. Vmaf reproducibility: validating a perceptual practical video

quality metric. In 2017 IEEE international symposium on broadband multimedia
systems and broadcasting (BMSB). IEEE, 1–2.

[36] Reza Rejaie, Mark Handley, and Deborah Estrin. 1999. Quality adaptation

for congestion controlled video playback over the internet. ACM SIGCOMM
Computer Communication Review, 29, 4, 189–200.

[37] David Roberts, Toby Duckworth, Carl Moore, Robin Wolff, and John O’Hare.

2009. Comparing the end to end latency of an immersive collaborative environ-

ment and a video conference. In 2009 13th IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications. IEEE, 89–94.

[38] Oliver Schreer, Ingo Feldmann, Sylvain Renault, Marcus Zepp, MarkusWorchel,

Peter Eisert, and Peter Kauff. 2019. Capture and 3d video processing of volu-

metric video. In 2019 IEEE International conference on image processing (ICIP).
IEEE, 4310–4314.

[39] Markus Schütz et al. 2016. Potree: rendering large point clouds in web browsers.

Technische Universität Wien, Wiedeń.
[40] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias

Hoßfeld, and Phuoc Tran-Gia. 2014. A survey on quality of experience of

http adaptive streaming. IEEE Communications Surveys & Tutorials, 17, 1, 469–
492.

[41] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro.

2017. Geometric distortion metrics for point cloud compression. In 2017 IEEE
International Conference on Image Processing (ICIP). IEEE, 3460–3464.

[42] Eric M Torlig, Evangelos Alexiou, Tiago A Fonseca, Ricardo L de Queiroz, and

Touradj Ebrahimi. 2018. A novel methodology for quality assessment of vox-

elized point clouds. In Applications of Digital Image Processing XLI. Vol. 10752.
SPIE, 174–190.

[43] [SW], Unity 2023. url: https://unity.com.

[44] Sam Van Damme, Maria Torres Vega, and Filip De Turck. 2021. A full-and

no-reference metrics accuracy analysis for volumetric media streaming. In 2021
13th International Conference on Quality of Multimedia Experience (QoMEX).
IEEE, 225–230.

[45] Jeroen Van Der Hooft, Stefano Petrangeli, Tim Wauters, Rafael Huysegems,

Patrice Rondao Alface, Tom Bostoen, and Filip De Turck. 2016. Http/2-based

adaptive streaming of hevc video over 4g/lte networks. IEEE Communications
Letters, 20, 11, 2177–2180.

[46] Jeroen Van der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and

Hermann Hellwagner. 2019. Towards 6dof http adaptive streaming through

point cloud compression. In Proceedings of the 27th ACM International Confer-
ence on Multimedia, 2405–2413.

[47] Jeroen van der Hooft, Hadi Amirpour, Maria Torres Vega, Yago Sanchez,

Raimund Schatz, Thomas Schierl, and Christian Timmerer. 2023. A tutorial

on immersive video delivery: from omnidirectional video to holography. IEEE
Communications Surveys & Tutorials.

[48] Wowza. 2021. 2021 Video Streaming Latency Report. Tech. rep. Wowza.

[49] Emin Zerman, Cagri Ozcinar, Pan Gao, and Aljosa Smolic. 2020. Textured mesh

vs coloured point cloud: a subjective study for volumetric video compression.

In 2020 Twelfth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE, 1–6.

[50] Yizhong Zhang, Zhiqi Li, Sicheng Xu, Chong Li, Jiaolong Yang, Xin Tong, and

Baining Guo. 2023. Remotetouch: enhancing immersive 3d video communi-

cation with hand touch. In 2023 IEEE Conference Virtual Reality and 3D User
Interfaces (VR). IEEE, 1–10.

[51] David J Zielinski, Hrishikesh M Rao, Mark A Sommer, and Regis Kopper.

2015. Exploring the effects of image persistence in low frame rate virtual

environments. In 2015 IEEE Virtual Reality (VR). IEEE, 19–26.

https://github.com/anonymous4674/sequence
https://github.com/anonymous4674/sequence
https://go.dev/
https://www.intelrealsense.com/
https://www.intelrealsense.com/sdk-2/
https://www.meta.com/quest/products/quest-2
https://www.meta.com/quest/products/quest-2
https://opencv.org/
https://github.com/keijiro/Pcx
https://github.com/pion/webrtc
https://unity.com

	Abstract
	1 Introduction
	2 Related Work
	2.1 Volumetric Video and Capturing Methods
	2.2 Point Cloud Compression and Codecs
	2.3 Low-Latency Delivery
	2.4 Quality Adaptation
	2.5 Rendering of Volumetric Video
	2.6 Quality Metrics

	3 Proposed Approach
	3.1 Depth Camera Capturing
	3.2 Preprocessing
	3.3 Quality Adaptation
	3.4 WebRTC-Based Delivery
	3.5 Virtual Reality Interactivity and Rendering
	3.6 VMAF in Volumetric Video

	4 Evaluation and Discussion
	4.1 Experimental Setup
	4.2 Evaluation Metrics
	4.3 Camera Capturing Delay
	4.4 Encoding Scalability
	4.5 Bandwidth Usage
	4.6 VMAF Quality
	4.7 Throughput and WebRTC Latency
	4.8 End-to-End Latency Breakdown

	5 Conclusion and Future Work

